New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing
نویسندگان
چکیده
In this paper, we propose a new memristorbased crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption.
منابع مشابه
Energy Efficient and Error Resilient Neuromorphic Computing in Vlsi
Realization of the conventional Von Neumann architecture faces increasing challenges due to growing process variations, device reliability and power consumption. As an appealing architectural solution, brain-inspired neuromorphic computing has drawn a great deal of research interest due to its potential improved scalability and power efficiency, and better suitability in processing complex task...
متن کاملAdvancing Memristive Analog Neuromorphic Networks: Increasing Complexity, and Coping with Imperfect Hardware Components
Abstract We experimentally demonstrate classification of 4×4 binary images into 4 classes, using a 3-layer mixedsignal neuromorphic network (“MLP perceptron”), based on two passive 20×20 memristive crossbar arrays, boardintegrated with discrete CMOS components. The network features 10 hidden-layer and 4 output-layer analog CMOS neurons and 428 metal-oxide memristors, i.e. is almost an order of ...
متن کاملA Neuromorphic Architecture for Context Aware Text Image Recognition
Although existing optical character recognition (OCR) tools can achieve excellent performance in text image detection and pattern recognition, they usually require a clean input image. Most of them do not perform well when the image is partially occluded or smudged. Humans are able to tolerate much worse image quality during reading because the perception errors can be corrected by the knowledg...
متن کاملNewton: Gravitating Towards the Physical Limits of Crossbar Acceleration
Many recent works have designed accelerators for Convolutional Neural Networks (CNNs). While digital accelerators have relied on near data processing, analog accelerators have further reduced data movement by performing in-situ computation. Recent works take advantage of highly parallel analog in-situ computation in memristor crossbars to accelerate the many vector-matrix multiplication operati...
متن کاملThe Stochastic Characteristics of Memristor Devices and Case Studies in Neuromorphic Hardware Design
As traditional von Neumann computing systems based on CMOS technologies gains less performance increment and energy efficiency from device scaling, neuromorphic hardware systems that potentially provide the capabilities of biological perception and information processing within a compact and energy-efficient platform have gained great attentions [1][2]. However, the hardware development of neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014